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Plane waves do not polarize the vacuum? 

Stanley Deser 
Physics Department. Brandeis University. Waltham, Massachusetts 02 154, USA 

Received 1 July 1975 

Abstract. Gravitational plane waves. like their electromagnetic and Yang-Mills counter- 
parts, are undistorted by vacuum polarization effects to all loop orders, if no  cosmological 
term is induced. 

Virtual quantum effects generally alter the characteristics of the vacuum in which a 
classical external field propagates. In electrodynamics these polarization effects due to 
virtual charged pairs are expressible in terms of field-dependent dielectric properties of 
the vacuum (Heisenberg and Euler 1936, Weisskopf 1936). For the special case of a 
plane wave, however, Schwinger (1951) showed that its propagation is unaffected (to 
all orders) by virtual electron pairs ; only an amplitude renormalization occurs. We 
shall give a simple argument for the general electromagnetic plane wave case, and 
show that for similar reasons a classical gravitational plane wave remains undistorted 
to all orders by arbitrary virtual pair effects (including gravitons). This rather unique 
property will be traced to the vanishing of all relevant invariants for these idealized 
solutions..$ 

Our basic observation is that the effective Lagrangian describing the vacuum polar- 
ization must be a gauge invariant scalar function of the field strengths and their deriv- 
atives. Thus in the Maxwell case, it would be a power series of the form 

F . .  . a F . .  . P F . .  . O F . .  . (1) 

where * F  is the dual tensor and derivative indices contract either with F’s or with 
each other to form D’Alembertians as indicated. The overall coefficients will be ap- 
propriate powers of a and of the Compton wavelengths of the virtual particles times 
numerical coefficients. But the characteristic of a plane wave is that its field strength 
is of the form 

2’$ - 

F,, = f,,F(n,x”) 
where n, is a null vector and the constant amplitudesf,,, *f,, are orthogonal to n,. 
From this, it is clear that all terms in (1) with explicit derivatives vanish, since any n, 
must contract either withf,, or itself. Thus, only polynomials in F (and * F )  can remain. 
But as is well known, any scalar function in F can be written as one depending only 
on the invariants F 2  and F * F ,  both of which vanish here. (Alternately, the eigenvalues 
ofj,, as a matrix are all null, therefore so is any polynomial in it.) The plane wave, 

t Work supported by the National Science Foundation 
1 Gravitational plane waves do, however. describe a singularity-free, complete (but not asymptotically flat) 
space 
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obeying Maxwell’s equations, can be thought of as governed by the unperturbed 
Maxwell Lagrangian while the effective source ( P )  = 6 9 Z f / 6 A ,  due to vacuum 
polarization vanishes here. 

The gravitational case is entirely analogous ; a plane wave here is a solution of the 
source-free Einstein equations characterized by (Ehlers and Kundt 1962) a curvature 
(or Weyl) tensor depending on a null   VU)^ = 0) coordinate U ,  so that a gradient of 
the curvature is equivalent to multiplication by a null vector. The expression cor- 
responding to (1) is now, in terms of the curvature tensor RpvrrPr 

L?fff - R . ~. V R  . . . O R . .  . R . . ., (2) 
whatever the character of the underlying virtual pairs (including gravitons). Any ex- 
plicit derivatives again vanish either when contracted together to form a null D’Alem- 
bertian or when contracted with a curvature index which leads to a form proportional 
to the curl of the Ricci tensor (by the Bianchi identities). 

Non-derivative polynomials again vanish by the null-eigenvalue property of the 
plane wave’s curvature tensor. A detailed proof of the vanishing of local plane wave 
invariants is given by Jordan et a1 (1960)t. 

So far, we have neglected the problems of divergences in the coefficients of equations 
(1) and (2), and we have also omitted a possible cosmological term in (2). In the Maxwell 
case, the only divergent coefficient is that of the F2 term, which contributes to amplitude 
renormalization only, at least for minimally coupled spinor and scalar charged particles. 
For gravitation, all coefficients in (2) will diverge, in general, but for the plane wave this 
is irrelevant. If one uses dimensional regularization as a cut-off method, then there 
will be no cosmological term when the virtual particles are massless. If, on the other 
hand, massive systems are included, ,/ -g contributions are in general unavoidable. 
These would no longer permit a plane wave amplitude. A possible way out is to demand 
that the renormalized cosmological constant vanishes by starting with an appropriate 
unrenormalized one for the virtual gravitons, or, if only quantized matter is considered, 
to have equally many fermion and boson fields so as to cancel their vacuum stress 
tensorsf. However, in the absence of a satisfactory renormalizable quantum gravity 
model, such delicate questions seem premature. 

The plane wave is an example for which the linearized approximation and the full 
theory coincide in the form of their solutions (in appropriate gauges)§. This is also the 
case for a Yang-Mills plane wave where the a priori non-abelian solutions FiV(nx) are 
effectively reducible to the Maxwell form because all components point in the same 
isospin direction (T T Wu 1974, private communication). Thus, we can immediately 
use the Maxwell argument to see that there is no vacuum polarization for this model 
either, since for this wave all Yang-Mills invariants clearly reduce to Maxwell ones. 
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Note added in proof. Gibbons (1975) has recently given an explicit calculation of vacuum 
polarization for a quantized scalar field. Using appropriate regularizations he con- 
cludes that the induced stress tensor vanishes for plane waves. 
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